Visualizzazione post con etichetta elettronica. Mostra tutti i post
Visualizzazione post con etichetta elettronica. Mostra tutti i post

martedì 10 agosto 2010

Progettazione alimentatore - realizzazione (parte3)

Alimentatore 24Volt 7Ampère 
In genere, alla prima accensione, il cuore batte forte... funzionerà? Si, funziona. Un primo collaudo ha dato esito positivo. Da alcune misure rilevo una tensione di uscita a vuoto di 26,5 volts, causate dalle differenze di valori e tolleranze dei componenti utilizzati e che si discostano dai valori di progetto. Per l'uso che ne devo fare non è un problema che però (alla bisogna) si può risolvere inserendo in serie alla R2 del partitore un minitrimmer di taratura. Ho collaudato il tutto con il dissaldatore ad aria calda misurando una tensione di uscita, a carico, di 25,5 volts. La prima preoccupazione è stata quella di misurare la temperatura dei dissipatori. Quello del ponte raddrizzatore raggiunge una temperatura di 66 gradi dopo 10 minuti di funzionamento. Il dissipatore più grande, preso in prestito da un PentiumII intel, arriva a 50 gradi ma credo che si stabilizzi con un uso più prolungato ad una temperatura più alta, comunque non critica. Il dissipatore dello stabilizzatore 7812, come previsto, resta a temperatura ambiente, segno che la resistenza da 10 ohm è del valore corretto ed i transistor lavorano alla grande. Non voglio provare a cortocircuitare l'uscita per verificare se funziona anche Q2... ho paura (prima o poi dovrò affrontarla). 
Durante la realizzazione mi sono accorto che la resistenza a filo che si vede al centro della basetta non era stata realizzata per essere stagnata (infatti lo stagno non si attacca...non ci avevo pensato). Allora ho risolto attaccandola a due fast-on con i corrispondenti (M/F) saldati direttamente nella basetta. Così se un domani voglio sperimentare altri valori, posso rimuoverla senza problemi. I cablaggi nella parte inferiore non voglio mostrarli...fanno proprio schifo, ma funzionano. Manca ancora il led di uscita, rosso con una resistenza da 1,2K. E' solo un fronzolo, utile però per verificare al volo se la tensione c'è o se è saltato qualcosa.
Ora sono alla ricerca di un contenitore che, viste le misure effettuate, è meglio che sia dotato di una ventola... guarda caso ho il case di un alimentatore con una mega ventola che aspetta di essere (ri)utilizzato. Dovrò prevedere un alimentazione separata a 12 volts per la ventola del case ed anche per la ventola del dissipatore dei due transistor (in foto non si vede). 7A richiedono una ventilazione adeguata per tenere sotto controllo la dissipazione del calore prodotto (vedi una possibile soluzione). Devo solo verificare se può contenere il mega trasformatore (enorme). Non è detto poi che un domani non mi sbizzarrisca di sperimentare le resistenze PTC o NTC come sensori per far entrare in protezione il circuito... ci penserò. Per ora l'importante è che funzioni in modo da poter recuperare altri componenti impossibili da recuperare con il succhiastagno, con la trecciola di rame o con il metodo del ferro da stiro. Alla prossima.

P.S. Antonio dice che ha caldo. Ripeto: Antonio dice che ha caldo.

domenica 8 agosto 2010

Progettazione alimentatore - componenti (parte2)

Come avevo già annunciato nel post precedente, (progettazione partendo dai componenti) occorre andare un pò a ritroso e ri-adattare le scelte progettuali in funzione di ciò che si riesce a reperire.  Sono passato alla fase di selezione dei componenti per la realizzazione dell'alimentatore da 24 volts 6 A. Ne ho  anche approfittato per mettere un pò in ordine alcuni condensatori in poliestere classificandoli per capacità, non senza aver dovuto ripassare la composizione delle sigle stampigliate, che a volte generano un pò di confusione.
Trasformatore: ho recuperato un trasformatore da 200VA / 24V CA cod.TCN150071 dal macchinario per la ricarica delle cartucce, recuperato un paio di anni fa (conservare fa sempre comodo e così ho risparmiato al minimo una trentina di euro). E' sovradimensionato, ma almeno non corro il rischio di bruciare quello che avevo originariamente selezionato con il secondario a 12+12 e 5V. L'etichetta suggerisce di mettere in serie al secondario un fusibile da 8A, giusto il valore massimo supportato dal ponte raddrizzatore.
Ponte raddrizzatore: Un fantastico RS805 da 8A e 100V preso da alcuni alimentatori da PC che un rivenditore "generoso" mi ha ceduto solo perchè così poteva risparmiare sulla tassa di smaltimento dei suoi rifiuti elettronici.
Condensatore di livellamento: C1... qui dovrò metterne più di uno in parallelo, anche se il ripple di uscita, dato l'uso che ne devo fare (un carico resistivo per il dissaldatore ad aria calda) non è poi così critico. Comunque ne ho messo in cantiere almeno una decina per selezionare quelli di uguale tensione di lavoro e capacità
Transistor di potenza: Q1 e Q2  PNP TIP34C 10A 100V provenienti da un vecchio macchinario di incisione a CNC preso in carico da una tipografia. A proposito...devo ricordarmi di farmi restituire la meccanica a 2 assi data all'attrezzista pigro che "lavora" a tempo perso per realizzare il terzo asse....latita....
Stabilizatore di tensione: IC1 - 7812, di questi ne ho una "montagna" recuperati pazientemente assieme agli omologhi 7912 (-12V) che si trovano negli alimentatori dei PC in coppia assieme agli 7805 / 7905, oltre a quelli per i 3,3volts. 
Condensatore di disaccoppiamento C5, a massa dello stabilizzatore, un comune 10microF da 50V
Resistenza per deviare la corrente su Q1 (R1): anche qui nessun problema. 10 ohm 1/4 di Watt. Per calcolare la sua potenza basta moltiplicare il suo valore per il quadrato  della corrente che scorre in essa.
Resistenza per protezione da cortocircuiti (sense resistor R2): qui ho dovuto pazientare un po...0,12 ohm 7W non è proprio un valore facilmente reperibile... pensando di sostituirla con un pezzo di filo di rame di lunghezza "sperimentale", mi sono accorto che i miei tester, nella misura di bassi valori, sbagliano. Se metto in corto i puntali alla portata minima da 200ohm, uno segna 0.3 e l'altro 0.8. Di farli tarare nemmeno a parlarne (costa troppo) per cui ho preferito sottrarre il valore "a zero" dalla misura effettuata. La mancanza di una seconda cifra decimale mi costringe ad arrotondare un pò e rinunciare alla precisione che mi piacerebbe.. Alla fine... mi sono ricordato di un post di qualche anno fa. Ed ecco che salta fuori il riscaldatore da automobile a resistenze, che un meccanico aveva catalogato come "guasto" e salvato dal bidone delle cose da buttare. Ho alla fine selezionato la resistenza più grossa del valore che spero si avvicini il più possibile agli 0,12 ohm necessari. Al limite la protezione interverrà a valori di corrente diversi, considerando che comunque sia il trasformatore, il ponte  (8A) ed i transistor (10A) sono prudentemente sovradimensionati. Se misuro infatti 1 ohm contro l'1,2 calcolato (col tester starato), la protezione interverrà a 7A invece dei 6A inizialmente ipotizzati. Poco male, grazie al sovradimensionamento del ponte e di Q1.
Condensatori anti oscillazione (C3 C4) per lo stabilizzatore di tensione da 100.000pF sigla 104 se di produzione asiatica (notazione in pico farad con moltiplicatore), 100n (notazione in nano farad) se europei, .1 (notazione in microfarad) se americani ed u1 (notazione del menga) se tedeschi (speriamo si mettano d'accordo prima o poi per uniformare le sigle). 
Partitore di uscita: due resistenze (R3  R4) entrambe di valore uguale il più vicino a 470 ohm. Niente trimmer di regolazione, non serve in questa applicazione, almeno per ora. 
Dissipatori: in pratica è necessario solo per Q1 ma dato che lavora in coppia con Q2 e temperature diverse alterano le caratteristiche del silicio (spero il ragionamento sia giusto), li montiamo sullo stesso dissipatore, di dimensioni "generose" che fa tanto alimentatore "di potenza", magari, esageriamo, ...anche una mini ventola da portatile, vedremo. Voglio prevedere anche un dissipatore per il ponte raddrizzatore, analizzando il data sheet è raccomandato, ed uno mini anche per lo stabilizzatore...devo utilizzarli in quanto non ho più posto nei cassetti.
Morsetti di alimentazione: qui devo ancora decidere cosa montare, ho l'imbarazzo della scelta, anche se mi piacciono i morsetti a vite (quelli verdi). Forse salderò i fili direttamente sullo stampato in entrata, dato che il trasformatore è già dotato di morsetti a vite.
Basetta: o CS per i puristi...preferisco una millefori, così non devo preparare master, fotoincisione o trasferimento di toner, bagni di acido ecc... solo un accortezza...la linea che porta i 6A andrà "rinforzata" con un pò di filo di rame da 0.5mm. 
Per il contenitore ci devo ancora pensare...vedremo. L'importante è essere riusciti a recuperare un pò di componenti elettronici (TUTTI rigorosamente di recupero), a costo praticamente ZERO, con indubbio beneficio per l'ambiente...io la mia parte la faccio. Alla prossima.

P.S. Ho una zanzara tigre in ufficio. Ripeto: Ho una zanzara tigre in ufficio.

giovedì 5 agosto 2010

Progettazione alimentatore (parte1)

Devo sostituire un alimentatore switching guasto che, per ora, non voglio riparare (lo metto comunque da parte). Mi serve per alimentare il dissaldatore ad aria calda autocostruito che ho interamente realizzato da me, descritto nei post precedenti. 24 Volts 4 - 6 A. Mi servirà inoltre per alimentare un taglia polistirolo, usato per formare dei fogli su cui infilo gli integrati TH previo rivestimento con la carta stagnola (per le scariche elettrostatiche che potrebbero danneggiarli). Lo sto realizzando e presto, forse, pubblicherò le foto.
L'assorbimento di corrente suggerirebbe di progettare un alimentatore switching, sia per eigenze didattiche personali che pratiche, date la "alte" correnti in gioco. Ma ho da parte dei componenti di recupero, dei trasformatori, regolatori di tensione ed una montagna di condensatori che voglio ri-utilizzare. Inoltre, gli switching li sto studiando ma ho difficoltà con le bobine ed induttanze di filtro e trasformatori in alta frequenza che vanno costruiti sulla base di dati che non ho (ferriti di recupero che permeabilità hanno?) Per cui, decido di procedere con un alimentatore lineare, a trasformatore, e memorizzare qui, nel mio diario personale, i dati che mi servono per realizzarne altri. In giro si trovano parecchi schemi, quasi tutti inutilizzabili per due motivi. O la tensione non è quella che mi serve, o la corrente si limita a poche centinaia di milliampère, o vengono usati transistor o componenti che difficilmente si trovano di recupero, ma soprattutto nessuno spiega come calcolare il valore dei componenti, quasi fosse un segreto di stato da custodire gelosamente. Forse siamo considerati delle scimmiette che copiano quello che c'è e comprano quello che non si trova pronto. Io voglio solo capire, arrangiarmi, sbagliare e soprattutto imparare. Solo così posso spingermi oltre. Allora. Partiamo. L'approccio non è la partenza da dei dati di targa per poi sceliere i componenti. Per un "recuperatore elettronico" occorre fare il contrario, ossia partire dai componenti ed usare quello che si ha, adattando il progetto di conseguenza (per questo è indispensabile sapere cosa si fa). Ho per le mani un vecchio alimentatore di un apparato ISDN, un classico +5 1A e +/- 12V 200ma. L'alimentazione duale dei 12 volts mi suggerisce che il secondario del trasformatore è a doppio avvolgimento con presa centrale, che possono essere usati in serie per ottenere i 24 volts necessari. Parto già dal dubbio che il trasformatore in questione probabilmente a pieno carico inizierà a friggere, ma per ora non è un problema...ci penserò più avanti Per la cronaca, 24 volts per 6A serve un trasformatore da almeno 150VA. 
Decido di raddrizzare la tensione di uscita con un classico ponte a 4 diodi. La corrente che questi devono supportare (I diodo) dovrà essere del 20% superiore alla corrente massima erogabile (I max carico) nel caso di raddrizzatore a ponte (50% per raddrizzatore a semionda), per cui:
I diodo=I max carico +20%
Negli alimentatori da PC si possono facilmente reperire ponti raddrizzatori anche da 10 ampere e più, perfettamente recuperabili. Devo ancora frugare per controllare cosa ho per le mani. 
La tensione raddrizzata che si ottiene dopo il ponte raddrizzatore sarà data dalla formula:
Vponte=(V trasf - 1,4) * 1,41
dove Vtrasf è la tensione alternata nominale del secondario del trasformatore (24V), che darà nel nostro caso 31,87 Volts e 1,4 la caduta di tensione su due diodi del ponte che lavorano in coppia per ogni semionda. Nel caso di raddrizzatori a singola semionda, occorre sottrarre 0,7V. 
Condensatore di livellamento: Appena dopo il ponte, è meglio inserire un condensatore che abbia una capacità data dalla relazione:
C1= 20.000/(Vponte/I max carico)
La tensione di lavoro di questo condensatore dovrà essere abbondantemente superiore alla tensione calcolata dopo il ponte raddrizzatore. 
Lo stabilizzatore di tensione: Ho a disposizione un certo numero di 7812, stabilizzatori per 12 volts positivi. Bisogna ricordare che per farlo lavorare correttamente, occorre che in ingresso sia presente una tensione 1,4 volte superiore alla tensione dello stabilizzatore. Questo per gli stabilizzatori della serie 78xx da 12, 15, 18 e 24 volts.
Come ottenere in uscita i 24 volts?? Basta inserire in uscita un partitore di tensione composto da due resistenze che chiamaremo R3 ed R4 ed il cui valore si calcola nel seguente modo: 
R3= Vintegrato/0.025 dove Vintegrato nel nostro caso è 12Volts.
R4= (Vout-Vintegrato)/0.025 ed otteniamo due resistenze del valore di 480 ohm che andrà arrotondato al valore disponibile più vicino. 
Il valore 0.025 è la corrente (25 milliampère) che si decide di far scorrere nel partitore. Per variare la tensione  in uscita si varia la R4 usando un potenziometro o un trimmer di valore adeguato. Il piccolo condensatore (C5) in parallelo ad R4 sarà di valore standard di 10pF. 
E' meglio inserire fra i terminali in e out dello stabilizzatore, due capacità (C3 e C4) da 100.000pF che andranno posizionate più vicino possibile all'integrato per evitare fenomeni di autooscillazione. 
Dato che l'integrato U1 che stiamo usando (7812) può erogare al massimo un ampère...dobbiamo trovare una soluzione per farlo lavorare come stabilizzatore e nel contempo permettere l'erogazione della corrente che ci serve. Adotteremo la soluzione in figura, decidendo a priori di far passare nell'integrato 200mA ed il resto nel transistor PNP Q1. Si possono usare dei vetusti TIP32 da 10A e 400V, reperibili facilmente negli alimentatori da PC un pò datati. Quando la corrente assorbita supera il valore che abbiamo deciso, si polarizza la base del transistor che entra in conduzione e lascia passare su di sè la corrente in più. La resistenza R1 si può calcolare con delle formule che però dipendono dal guadagno del transistor. Dato che questo valore varia da transistor a transistor, si sceglie un valore che va da 9 a 12 ohm. In ogni caso, per calcolarla, usare le seguenti formule:
I base q1= Imax/Hfe dove Imax è la massima corrente erogabile dall'alimentatore ed Hfe il guadagno misurato del transistor Q1 (o preso come valore medio dal datasheet). Un valore prossimo a 40 per i transistor di potenza è comunque una buona partenza.
Ir1=0,2 -Ibase dove 0,2 sono i milliampère che lasciamo passino nel regolatore.
R1=0,7/Ir1 dove 0,7 è la tensione necessaria a portare in conduzione il transistor Q1.
La potenza di questa resistenza andrà calcolata con :
Watt r1= (Ir1*Ir1) / R1

Meglio inserire anche una protezione dai cortocircuiti. Per farlo occorre un altro transistor PNP Q2 uguale a quello già usato ed una resistenza a filo R2 in grado di supportare la corrente massima. La resistenza andrà calcolata con :
R2=0,7/Imax (verrà fuori un valore molto basso)
R2 può anche essere del tipo autocostruito, avvolta magari su un materiale isolante che resiste ad alte temperature...vetro, ceramica, pietra ecc....
Alla fine, verso l'uscita si inserisce un condensatore di livellamento C2 del valore 10 volte inferiore a quello usato subito dopo il ponte radrizzatore:
Cout=Cin/10  o C2=C1/10 con tensione nominale almeno doppia rispetto al valore di tensione progettato. 
Può essere cosa utile inserire un paio di led (ingresso ed uscita) per monitorare la presenza o meno della tensione necessaria, un interruttore principale ed un fusibile in ingresso. Per il calcolo della resistenza di caduta del led rimando ai tantissimi calcolatori on-line. 
OK. Montaggio su 1000fori, collaudo e tutto dovrebbe funzionare a meraviglia, ricordando di montare regolatore e transistor su un aletta di raffreddamento di dimensioni generose (quelle dei PentiumII intel sono ottime e si può tenere anche la ventolina per migliorare la dissipazione). 
Ora, pian piano, con moooolta calma e flemma dato che non ho nessun padrone aguzzino che mi frusta, passo alla realizzazione, dopo aver messo assieme i componenti che mi servono, adattando il tutto in base a quello che trovo.  Posso recuperare tiutti i componenti, compresa la presa VDE 220V, l'interruttore da pannello, i led, il dissipatore in alluminio...se tutto va bene posso recuperare anche un case ventilato...vedremo. Alla prossima.

P.S. Oreste chiama la pioggia e le nuvole arrivano da Est. Ripeto:Oreste chiama la pioggia e le nuvole arrivano da Est.

giovedì 29 luglio 2010

Riparazione alimentatore Fonera (parte 2)

Temporali, tuoni e fulmini... e l'alimentatore della fonera salta di brutto. E' lo stesso che avevo riparato in precedenza, descrito in un post apposito. Rimando a quella pubblicazione per le considerazioni generali, compreso il metodo di apertura del guscio. Stavolta, non sembrano evidenti segni di bruciature...brutto affare, il fusibile è ok, ma l'alimentatore completamente morto...si sarà rotto lo stadio finale? In questi casi come si opera? Come si procede per individuare il guasto? Io ho fatto così. Tester, scala prova diodi e dall'ingresso in avanti si cerca di procedere provando uno ad uno i componenti. Per ora sono riuscito ad individuare il Filtro di ingresso (L3) ma credo che dovrò dare un occhiata anche al condensatore in poliestere già sostituito in precedenza. Il problema reale, una volta dissaldata la doppia bobina montata su un nucleo di ferrite, si nota immediatamente... c'è una bruciatura sul circuito stampato. Il componente riporta una sigla 30C050098-01 ma, per ora, una ricerca in rete non ha dato esito positivo. Nella scatola dei componenti di recupero non ne ho nemmeno una di simile per dimensioni... Temo che dovrò rifare gli avvolgimenti a mano, se si riesce di smontare il tutto e contare il numero di spire che, spero, non sia particolarmente critico.... tentar non nuoce. Alla peggio, posso prevedere un classico alimentatore da 5V 2 A, progettato ad hoc attorno ad un regolatore 7805 recuperato da qualche alimentatore da PC. La sfida però mi alletta e sono tentato di procedere... vedremo. Alla prossima.

Aggiornamento. Ho rifatto gli avvolgimenti della bobina di filtro. E' sufficiente avvolgere 138 giri di filo di rame smaltato da 0,1mm di diametro. e risistemare le due ferriti ad "U". Con un pò di pazienza si può. Il problema è che appena inserisco l'alimentatore nella presa, scatta il differenziale. L'alimentatore non dà segni di bruciature, scintille, fumo o altro ed il fusibile resta integro. Scatta solo il differenziale generale dell'impianto elettrico di casa. Probabilmente i due avvolgimenti non sono perfettamente bilanciati, forse ho sbagliato a contare le spire. Devo rassegnarmi in attesa di reperire il componente. Pazienza.

P.S. Il liquido è limpido. Ripeto:  Il liquido è limpido.

sabato 5 giugno 2010

Alimentatore DSA-0151A-12 riparato

E' incredibile quali siano  le motivazioni che spingono le persone a buttare l'hardware. Stavolta è toccato ad uno scanner..."è guasto, non funziona più, ho dovuto prenderne uno di nuovo...". Se lo butti in discarica dallo a me che te lo porto via io...grazie. In laboratorio le prove ed il collaudo... è l'alimentatore andato, mentre lo scanner funziona perfettamente e non è certo da buttare. Nel caso peggiore, con pochi euro si va in negozio e si prende un nuovo alimentatore da 12 volts 1,25 Ampère, minimo. Ma nel mio caso, è sabato, le strade sono affollate da imbecilli in pausa di lavoro solo 2 giorni la settimana, massaie col suv usato per andare a fare la spesa e puttanelle in attesa che arrivi l'ora giusta per ubriacarsi di spritz. Di uscire nemmeno a pagarmi, e poi non voglio inquinare, parcheggiare, zizzagare fra pedoni ubriachi, motociclisti con istinti suicidi e ciclisti maleducati... se posso starmene a casa... preferisco. E' un periodo in cui sono iper impegnato in un mega progetto di bug hunting su un prodotto software open source che sta per uscire...ma una pausa me la prendo.
L'alimentatore è un DVE modello DSA 0151A-12 UP, sigillato ed apparentemente morto. L'apertura col solito metodo del seghetto, già descritto e visto per le riparazioni precedenti, ed il guscio salta via per rivelare l'interno. Il problema salta subito all'occhio non appena si toglie la gommapiuma che tiene fermo lo stampato (famoso metodo cinese). Il fusibile è annerito ed un transistor è disintegrato...brutta storia se non si può leggere la sigla. Fortunatamente, dentro il guscio trovo una briciola di plastica che mi permette di leggere parzialmente la sigla. C945P, è un transistor Philips NPN (general purpose) in contenitore TO92 con Vce 50V Ic 100mA Fortunatamente ne ho un paio nei cassetti che contengono tutti gli altri in attesa di essere catalogati, un colpo di fortuna. Per sicurezza smonto anche diodi e transistor di potenza che stanno attorno. Il componente sull'aletta di raffreddamento è un MOS FET N Channel da 600V (Vdss) e 6A (Idrain) con Rdson 9ohm e Vgsth da 2 a 4 volts in sigla 2SK2545. Ne ho uno di simile 2SK2544, che si differenzia solo per il case metallico invece di plastico e lo sostituisco per tranquillità in quanto ho il sospetto che sia guasto anche quello, non senza averlo isolato con della mica dal dissipatore. Anche un diodo PR1002 è da sostituire. Il resto sembra a posto. Riassemblo il tutto dopo aver recuperato un fusibile da 1A 250V (sempre e rigorosamente di recupero), collego la spina et voilà, funziona!!! Anche questa volta è andata bene, ho risparmiato, ho recuperato e reso inutile la discarica e soprattutto ho uno scanner praticamente nuovo da vendere per 5 o 10 euro, così mi pago i caffè ed un paio di birre se mi va ed aiuto qualcuno che non si può permettere di spenderne di più. Soddisfatto, decisamente soddisfatto. Alla prossima.

P.S. 15.21.33.22.789.15.23.44.65.1.1.090967.12 Ripeto: 15.21.33.22.789.15.23.44.65.1.1.090967.12

lunedì 26 aprile 2010

Recuperare dati da supporti danneggiati (parte 2)

Parto da un commento arrivato nel post precedente a questo, dal blogger Gain,  per alcune considerazioni che meritano un piccolo approfondimento. Ecco il commento in sintesi: "Un post davvero ottimo. Alcuni software già li conoscevo, altri invece no. Ti scrivo perchè volevo un tuo parere: ho una penna usb danneggiata a livello hardware  (collegandola ad un pc linux, il dmesg non dà segni di vita...).
C'è il modo, magari analizzandola con un tester, di capire dov'è il guasto e intervenire in qualche  modo? Lo schema di questi dispositivi ha qualcosa di "standard", oppure senza lo schema del circuito è una battaglia persa in partenza? Ho scritto al produttore chiedendo se potevano inviarmi  documentazione al riguardo, ma non so se risponderanno...
Ho scritto qui perchè non ho trovato riferimenti sul blog a cui scrivere. Complimenti per il blog...
"

Partiamo dalla fine....grazie per i complimenti... nel sito mancano i riferimenti perchè tengo alla mia privacy e questo diario non ha finalità pubblicitarie o mirate ad agevolare la mia notorietà o soddisfare il mio ego. Per il supporto danneggiato a livello fisico, occorre capire come sono fatte queste chiavette. Parlo a titolo generale ovviamente, non avendo alcuna indicazione su tipo, marca, modello della chiavetta e nemmeno indicazioni sui chip che sono montati. Le chiavette di ultima generazione presentano pochi componenti on board. Un processore, una memoria flash, un quarzo ed altri componenti di servizio (resistenze, condensatori).
Il processore (USB2.0 flash disk controller), che viene alimentato direttamente dai pin +5 e GND della presa USB, ha il compito di decodificare i segnali che arrivano da D+ e D- in modalità LVDS ed organizzarli correttamente nella memoria Flash (sia in lettura che scrittura). Com'è noto, le memorie flash hanno una durata limitata, data da un preciso numero di cicli lettura/scrittura indicati dal produttore, superati i quali non è più garantita la lettura, la scrittura o la memorizzazione del dato. Questa può essere una causa della perdita di dati che richiede la procedura di ripristino o recupero descritta nel post precedente. In base invece al sintomo segnalato, sarei più propenso a pensare ad un problema nello stadio iniziale. I casi possono essere: 1) il processore, per qualche motivo, non è alimentato 2) è interrotta la linea dati dal PC al processore della chiavetta.
Se un sistema linux non "sente" l'inserimento (ed il demone di rilevamento dell'evento hotplug è avviato e funzionante) possiamo con buona probabilità imputare la problematica a qualcosa che risiede nello stadio di ingresso. Una causa della problematica 2, abbastanza frequente, è una stagnatura fredda nel circuito, un contatto che va e viene, una deriva di qualche componente che a freddo non funziona mentre a caldo si...occorrerebbe fare delle prove...
Verificare se arriva alimentazione è abbastanza "facile" e si può usare un tester... se si dispone di puntali sottilissimi e mano fermissima. Il passo dei piedini del processore è veramente piccolo e si corre il rischio di mettere in corto qualcosa, peggiorando la situazione. Se è possibile seguire le piste (cosa improbabile in quanto il circuito stampato può essere multitstrato), si può tentare di misurare in prossimità dei componenti smd lungo il percorso.
Nel caso invece in cui si ipotizzi un problema di dati...un tester è inutile, meglio un oscilloscopio od un analizzatore di stati, strumenti da laboratorio e non certo alla portata di tutti. Nelle foto di esempio che riporto qui a scopo didattico, possiamo vedere una chiavetta aperta. Il processore è un CBM2091 della Chipsbank. Il datasheet è disponibile in rete e contiene anche uno schema elettronico per delle applicazioni tipiche. E' molto probabile che l'hardware segua i suggerimenti del datasheet, per cui è come avere lo schema della chiavetta e tentare, con la strumentazione adatta e conoscendo il significato e funzione dei piedini, una qualche sorta di analisi per tentare di capire dove risiede il problema. 
Nel retro del circuito stampato è possibile vedere il chip di memoria (flash), nel nostro caso con la sigla coperta dalla colla che non ho tolto (per pigrizia...i dati li ho già recuperati). Si può pensare di sostituire il chip flash? Non è impossibile, anche se vanno fatte ovviamente le solite considerazioni sia in termini economici che pratici...ne vale la pena? Forse in casi particolari si...la soddisfazione di fare cose che non sono alla portata dei comuni mortali.....non ha prezzo. Alla prossima. 

P.S. I sette nani sono in partenza. Ripeto: I sette nani sono in partenza.

giovedì 10 dicembre 2009

UPS Kraun K-650


Oggi, da un cliente, mentre ero intento a capire le cause del blocco del computer, viene a mancare la corrente. Improvvisamente si spegne tutto e l'ups inizia a fischiare... Ma come? Non dovrebbe garantire la continuità dell'alimentazione in caso di black-out? Scopro così che è guasto, praticamente inutile. Vane le rassicurazioni del titolare..."...ieri andava...". Mi spiace, oggi non va. Per rassicurare il cliente, si riprova e si riscontra che l'UPS in caso di interruzione dell'alimentazione si spegne e basta. "Ma come...è praticamente nuovo!!..." si lamenta il titolare. "Bene, fammi vedere la fattura di acquisto"... si scopre così che l'UPS è in esercizio ininterrotto da più di due anni e mezzo. Sicuramente la batteria è andata. Si va assieme di corsa ad acquistare un gruppo di continuità nuovo, 90 euri e lo si installa per la carica (minimo 8 ore). Con l'occasione, ne approfitto per l'acquisto di un cellulare a 19 euro (da tenere di scorta per le emergenze) e di un regalo per il figlioccio, un rasoio elettrico visto che ormai è grande e la barba gli spunta copiosa....più peloso di un cinghiale...non è mio figlio naturale.
L'hardware vecchio lo porto a casa...per delle prove. Lo apro sperando che l'elettronica sia a posto e noto che effettivamente la batteria presenta dei rigonfiamenti.. è una batteria da 12 volts 7 Ampere/ora Misura 10 volts... è proprio andata. Una rapida corsa da un rivenditore di zona e ne prendo una di identica, 16 euro...credevo peggio, quella guasta la smaltisce lui...grazie. Ora, dopo l'installazione, è in carica... speriamo che l'elettronica sia integra. Per sicurezza ho chiesto al produttore se è disponibile lo schema per un eventuale diagnosi e riparazione... probabilmente è il circuito di by-pass o l'inverter a non fare il suo dovere. So già cosa mi risponderanno... "...lo schema non è disponibile, conviene acquistare un gruppo nuovo..." maledetti bastardi, ma io vi fotto, è da tempo che lo faccio. Lo aggiusto, a costo di passarci le notti, di ricostruire lo schema (mai sentito parlare di reverse engineering?) e di sostituire i componenti. Quell'atteggiamento mi fa talmente incazzare che sono disposto anche a rimetterci pur di mettervelo in quel posto. Un UPS nuovo?? della stessa marca?? Giammai!!. Il cliente ci è arrivato da solo...ha cambiato marca naturalmente. Kraun nella mia azienda?? Giammai. E il "brand" (CDC) finisce nella lista nera dell'hardware da non acquistare mai più. Fanchiulo!
Alla prossima.

P.S. La mangiatoia è vuota ed il bue ha fame. Ripeto: La mangiatoia è vuota ed il bue ha fame.

Aggiornamento: L'elettronica funziona perfettamente dopo la sostituzione della batteria. Praticamente un UPS nuovo con 16 euro e mezz'ora di lavoro...non male. In queste condizioni lo si può rivendere in "garanzia" 2 anni, magari a 20-25 euro... lavoro compreso ovviamente. Comunque, come previsto, ecco la risposta ottenuta dal produttore:"Gentile Cliente,  siamo spiacenti, ma non abbiamo disponibile lo schema elettrico/service manual del prodotto.  Le eventuali riparazioni su questo tipo di prodotto vengono effettuate sostituendo l'intero prodotto, o al massimo la scheda elettronica." ergo, niente schema niente acquisto, logico no?

domenica 6 dicembre 2009

Laser - DVD


Un masterizzatore SONY Dual layer che non masterizza è un "simpatico" soprammobile e se in più legge male i supporti, allora è venuto il momento di utilizzarlo come cavia da laboratorio da sezionare e sacrificare per motivi scientifici. Non ricordo dove, ma avevo letto della possibilità di aumentare la potenza di lettura e scrittura dei laser interni per tentare di risolvere i problemi di lettura o masterizzazione che affliggono spesso questi dispositivi. In prossimità delle testine di lettura e scrittura, proprio nei cavi flat di colore arancione che collegano i diodi laser, spesso ci si imbatte in dei micro trimmer che regolano proprio la potenza di emissione del laser che esce dai diodi. Nel mio caso ce n'erano tre, uno marchiato CD. Provando a girarli in un senso, il lettore non legge più niente, nell'altro il lettore da errori vari in lettura. L'esperimento, preso non troppo seriamente, mi ha solo convinto di approfondire la questione per i prossimi lettori. Per questo dispositivo invece, ho riservato una fine che da tempo stuzzicava la mia curiosità. Smontare il diodo  laser di scrittura (masterizzazione) ed usarlo come un "potente laser da taglio". Data la potenza esigua, non si può certo pretendere chissà quale prestazione, ma ero troppo  curioso di vedere come funziona la cosa e raramente riesco a recuperare dalla discarica dei masterizzatori.
In primis, una rapida googlata e mi imbatto in un filmatino che spiega come montare il DVD laser su una torcia per accendere dei fiammiferi, far scoppiare i palloncini o allontanare i piccioni dal poggiolo senza dover uscire a spaventarli ogni volta. Lo stesso filmato è ripreso pari pari da molti blogger maestri del copia incolla, sempre pronti a copiare senza citare la fonte e ripetere a pappagallo le cose senza nemmeno prendersi la briga di verificare. Io ho voluto provare di persona per arrivare alle seguenti conclusioni. Per prima cosa...quale dei due?? Quale è il laser che masterizza e quale quello che legge?? Bella domanda. Il laser di scrittura dovrebbe sempre essere montato su un dissipatore metallico per lo  smaltimento del calore prodotto. Nel dubbio recuperarli tutti e due e provare.

Poi occorre collegare correttamente i fili. Come si vede dalla prima foto, il primo in alto è il positivo, il secondo a scendere la massa ed il terzo non viene usato...in questo caso. Il primo terminale è l'anodo del diodo laser principale con il catodo a massa. Il terzo terminale è un diodo di protezione che viene usato a volte per limitare la potenza di emissione ed evitare la bruciatura del diodo principale.
A quale tensione deve essere alimentato?? il filmato bufala parla di due pile AA in serie per un totale di 3 volts. Ho provato con 4 pile scariche in modo da ottenere 3,5 volts ma il diodo laser ad infrarosso utilizzato nel mio caso emette una luce fioca (visibile solo con una fotocamera che è sensibile agli infrarossi e ne permette la visualizzazione nonostante i filtri ottici limitatori di cui sono dotati gli obiettivi). Devo riservarmi di provare ad alimentarlo a 5 volts e vedere se si brucia o se spara fuori un laser più potente.
Si ottiene un bel fascio luminoso come nel filmato bufala?? Si, No, dipende. Se si usa il diodo laser di un masterizzatore blu-ray, si vede un bel fascio blu. Se si usa un diodo ad infrarosso....non si vede nulla ed il pericolo è quello di bruciarsi le retine degli occhi senza nemmeno rendersene conto (RICORDARE CHE E' PERICOLOSO GIOCARE CON I LASER SENZA PROTEZIONI). Dipende poi da modello a modello di masterizzatore il tipo di laser che si ottiene.
In ogni caso meglio non togliere il diodo  dal suo alloggiamento, altrimenti occorre rifare l'ottica di focalizzazione ed il raggio laser si disperde perdendo di potenza. Generalmente questi laser sono progettati per lavorare a distanze minime. La potenza di un laser diminuisce in proporzione quadratica con la distanza. Per cui scordarsi di usarli per accendere un fiammifero a 30cm di distanza come si vede nel filmato bufala.
Conclusioni: le istruzioni che si trovano in molti blog italiani sono delle vere bufale di gente frustrata che non vuol raccontare i propri fallimenti. Il laser che si ottiene dai diodi dei masterizzatori "normali" non serve certo per tagliare, incidere, forare o ottenere qualche lavoro "utile". Hanno qualche effetto se la superficie di lavoro è nera ma francamente realizzare un "laser-taglia nastro isolante" mi pare un pò eccessivo.  Sono sicuramente dannosi per la vista, sicuramente quelli ad infrarossi che subdolamente colpiscono senza lasciare traccia dell'assassino. Ma... devo sperimentare la distanza massima che può raggiungere, in termini di visibilità. Ho in corso l'esperimento di rilevazione delle vibrazioni a distanza ed un raggio ad infrarosso, invisibile, capita a fagiolo. Devo solo predisporre l'ottica di un mini telescopio e capire come allineare perfettamente l'oculare con il puntatore. Poi devo modificare una webcam e togliere il filtro ad infrarosso e vedere come si comporta (anche in questo caso di filmati bufala ce n'è a iosa). Meglio far da sè che prendere per buoni gli scherzi di molti a cui interessa solo alimentare il traffico nel proprio sito con la speranza di qualche clic pagato sui banner pubblicitari. alla prossima.

P.S. Il punto focale è freddo. Ripeto: Il punto focale è freddo.

lunedì 30 novembre 2009

Epia mini ITX - riparazione


Tanto vale provare a recuperare anche le due mother board EPIA Mini-ITX che erano nei case già trattati nei post precedenti. L'ideale in questi casi, sarebbe avere un qualche strumento di diagnostica, uno schema di principio, un analizzatore di stati ed un oscilloscopio. In mancanza di adeguata strumentazione, ci si deve accontentare del metodo visivo. Si cerca di individuare un qualche componente difettoso e lo si sostituisce, sperando per il meglio. Per entrambe le mother board si notano dei condensatori rigonfiati, sempre gli stessi. Il primo (CE3) si trova accanto alla presa di alimentazione, il secondo (CE18) accanto alla presa VGA ed il terzo (CE25) in prossimità del connettore per il floppy. Tutti e tre, elettrolitici, sono da 1000 mF 10Volts 105°. Ne ho in magazzino, di recupero, per cui provo ad effettuare la sostituzione. Per dissaldare i componenti dalle mother board occorre usare qualche trucco. Le piazzole del circuito stampato sono minuscole, molto più piccole della punta del dissaldatore (o succhia stagno). Il diametro interno del foro di aspirazione, più grande della piazzola, ha delle difficoltà a scaldare per bene la piazzola, per cui ci possono essere delle difficoltà nell'asportare tutto lo stagno e togliere agevolmente il componente. Ad insistere si corre il rischio di bruciare la sottilissima pista di rame. Si può allora procedere con lo scaldare i refori del componente, alternativamente, e toglierlo con calma facendolo "dondolare". In questo modo il componente viene via ma il foro passante del CS resta pieno di stagno. Con una trecciola dissaldante di rame si cerca di eliminare quanto più stagno possibile, non senza prima aver innaffiato il punto con abbondante flussante. Si prova con il succhia stagno per vedere se si riesce ad aprire il foro. In caso negativo io faccio così. Si piglia un ago da siringa (il più grosso a disposizione), si scalda il foro e lo si infila in modo da aprirlo. L'ago è di acciaio e lo stagno non si incolla su di esso.
Un altro sistema consiste nel tenere in una faccia del CS la punta dello stagnatore dentro il foro e dall'altro la punta del succhia stagno. Occorre pertanto tenere in piedi la mother board, ben ferma su tre lati.
Con questi sistemi si riesce ad aprire i fori ed infilare il nuovo componente per la sostituzione. Ricordare sempre di usare flussante a pioggia per agevolare la fusione dello stagno. Una volta sostituiti i condensatori, ho provato ad alimentare le mother board con cavi, dischi e connettori di recupero, con un alimentatore da PC. La prima mother board ha tirato un botto pauroso da far scattare l'interruttore automatico. L'alimentatore si è salvato ma sicuramente la piastra ha un corto da qualche parte, non troppo difficile da trovare, anche se credo che nonostante non presenti tracce evidenti di bruciature (strano), sia totalmente defunta. La seconda invece, dopo la riparazione...funziona. Alla prima accensione emetteva un suono intermittente dal cicalino, il che indica problemi del banco di memoria (DIMM max 1Gb). Poi usciva l'errore 1234F che indicava problemi al boot (un lettore CD di recupero guasto). Alla fine sono riuscito ad avviare una ubuntu 9.10 e tutto funziona perfettamente. Sto già predisponendo il secondo server che userò per sperimentare un centralino asterisk per la video-conferenza. Grazie ancora al collega per la donazione. Alla prossima.

P.S. Osteria numero mille, il mio PC fa le scintille. Ripeto: Osteria numero mille, il mio PC fa le scintille.

domenica 29 novembre 2009

CWT150 FATX - Alimentatore switching (parte 2)


Preso dall'euforia derivata dal successo della riparazione del post precedente, ho deciso di provare a riparare anche il secondo alimentatore recuperato, convinto presuntuosamente di andare a colpo sicuro. L'analisi visiva ha immediatamente spento l'entusiasmo e una successiva dissezione dei componenti ingombranti mi ha scoraggiato dall'insistere. Un mosfet di potenza nello stadio di commutazione ad alta tensione ed un circuito pre-assemblato presentano dei seri danni dovuti ad una scarica elettrica. Non credo che la causa sia dovuta ad un picco di sovratensione in ingresso. Più probabilmente si tratta del cedimento elettrico dei componenti bruciati. In questo caso  non c'è molto da fare. La bruciatura ha cancellato la sigla del componente, ed il circuito pre-assemblato non si trova in commercio. Occorre tentare di rivolgersi alla casa produttrice e sperare siano così gentili da fornire schema completo di part-list ed ordinare i pezzi. Prospettare una spesa è improponibile, non fosse per una questione di orgoglio personale a spingermi a tentare. Occorre tenere conto che il guasto probabilmente si è propagato ad altri componenti, visivamente intatti ma presumibilmente danneggiati dai transitori di tensione creati con l'arco voltaico che ha fatto letteralmente "esplodere" il transistor. Questo è un guasto di quelli brutti, nello stadio centrale, difficili da risolvere, costosi e rognosi nella soluzione. Decido per ora di non controllare nemmeno il ponte di diodi ed i vari componenti dello stadio  precedente. A fronte di un problema di questo tipo, forse conviene desistere e ammettere che economicamente "conviene" buttare e prenderne uno nuovo. Preferisco però, da buon testardo, provare a reperire i pezzi tramite il produttore, avendo così modo di verificare e misurare concretamente la "qualità ed attenzione al cliente" tanto millantata dalle aziende nei loro siti web.

Questo alimentatore inoltre ha un altro problema nello stadio finale. due condensatori presentano dei rigonfiamenti, tipici e già analizzati nei post precedenti, che suggeriscono la loro sostituzione. In foto si vede poco, ma si tratta del condensatore sotto l'aletta di raffreddamento a sinistra e di quello accanto ai fili di uscita in basso a destra. Gli altri sembrano a posto, almeno un buon segno, ma vanno comunque provati e misurati.
Quindi, stadio HV, PWM e finale con non meglio precisati "problemi"... provo a googlare per trovare il produttore, non demordo e procedo. Alla prossima.

AGGIORNAMENTO: il produttore risponde:
Dear *,
My name is * who is in charge of Power supply products in CWT company. I am very sorry to inform you that this item had been discontinued for a while. I suggest that you can buy a new one at the moment.

Mia Considerazione:
Grazie, ma avevo chiesto lo schema e della documentazione tecnica che elenchi i componenti utilizzati. Se l'alimentatore è fuori produzione significa che avete distrutto anche la sua documentazione?? significa che non funziona bene e che quindi è necessario far sparire le tracce del progetto?? Significa che non posso mai più riparalo? boh. mo ci riprovo.

AGGIORNAMENTO II°: il produttore risponde:
Dear *,
We don’t even have the schema electronic archives and the list
of components now. I suggest that you can buy a new one is better.

Mia considerazione:
Meglio comprare che riparare, ovviamente, secondo il loro punto di vista. Mi viene voglia di insistere con risposte di questo tono. Vorrei provare a fingermi un grosso importatore e subordinare preventivamente l'acquisto di una decina di container alla disponibilità dello schema elettronico. Sono proprio curioso di vedere cosa mi dicono. Oppure avvisarli che, a causa della mancanza di possibilità di offrire adeguata assistenza tecnica, mai più acquisterò prodotti provenienti dalla loro azienda, così come suggerirò alla rete di non acquistare alimentatori marchiati CWT in quanto del tipo "usa e getta".

P.S. La condensa è arrivata e la temperatura diminuisce. Ripeto: La condensa è arrivata e la temperatura diminuisce.

CWT150 FATX - Alimentatore switching riparato (parte 1)


Mi hanno regalato, per la cifra simbolica di 6 euro, 2 mini PC dotati di mother board mini ATX Epia ed un'altra mother board nuova di palla con imballo originale. In realtà il tutto era gratis, dei rimasugli ingombranti di laboratorio utilizzati per delle server appliance sperimentali che non hanno trovato mercato. Mi sentivo in colpa a ritirarli "agratis", per cui mi sono offerto di offrire sigarette cappuccino e brioche al Collega che ha deciso di disfarsene. Il materiale arriva nel momento giusto, dopo la decisione di cambiare il vecchio server, di recupero dalla discarica, col contenitore piegato da una caduta accidentale e risistemato a martellate, il tutto tenuto assieme con il nastro adesivo e con un alimentatore talmente rumoroso da sembrare un quadrimotore tupolev di fabbricazione sovietica in piena guerra fredda. Lavorare in ufficio con un fischio costante non è proprio il massimo ed ho resistito solo perchè le finanze languono e di spendere in regime di sciopero della spesa nemmeno a parlarne... per coerenza.
Entrambi i case appena recuperati hanno l'alimentatore rotto, sono senza disco fisso e solo uno di loro ha un banco di memoria da 512Mb. Recupero un disco da 40 Gb (più che sufficienti per lo scopo), ed un alimentatore da PC (il più minuscolo che ho trovato, l'ho attaccato esternamente al case col bi-adesivo) e dopo l'installazione di una distribuzione linux, il server è pronto per lavorare 24/24 7/7 con un rumore attenuato rispetto al precedente ma ancora udibile. La ventola si sente ancora...soffia.

Decido allora di riparare l'alimentatore switching originale in dotazione al contenitore recuperato. Ne ho due, penso, e sicuramente uno lo rimetto in funzione. L'obiettivo è fare pratica con le riparazioni, risparmiare e divertirmi, ovviamente. La decisione di riparare è nata anche da due fattori: un salto da un rivenditore mi ha spinto a prendere la decisione...l'alimentatore nuovo, venduto singolarmente costa attorno ai 90 euro senza iva e senza sconto. Inoltre il rivenditore vuole rifilarmelo assieme al case per ulteriori 60 euro. Per fortuna non riesce a trovarlo in magazzino (scoprendo così che il pezzo se lo era imboscato un suo dipendente) e così me ne vado felice di non dover inventare una scusa per non dargli del ladro davanti ai suoi clienti. L'alimentatore è della Channel Well Technology Co. LTD modello CWT150 FATX, uno switching da 150 W miniaturizzato. Il metodo di riparazione è sempre quello già spiegato nei post precedenti (alimentatore della Fonera e dei telefoni Perfectone IP301). Dato che l'alimentatore è completamente morto, il primo controllo è per il fusibile di ingresso, risultato interrotto ed il secondo controllo, effettuato visivamente, mirato ad individuare se ci sono segni di bruciature. Lo spazio non è poi tanto ed occorre farsi largo dissaldando uno ad uno i componenti dall'ingresso in avanti. Si procede con il controllo dei componenti a valle del fusibile: il termistore, il filtro emi, il ponte dei diodi, il condensatore di livellamento, i mos-fet primari ecc.ecc. Fortuna vuole che un gusto risieda nel ponte raddrizzatore e nel termistore risultato "esploso" (me ne sono accorto dopo in quanto nascosto dal fusibile). Il guasto sembra quindi localizzato nella parte primaria in quanto sembra che i componenti a valle si siano salvati. Tutti i componenti utilizzati per la riparazione sono di recupero: il fusibile da 4A, il ponte raddrizzatore da 600V 2A (KBP06). Per il termistore ho avuto qualche difficoltà. Non ho trovato un SCK054 ma solo un SCK053 e SCK055. L'ultima cifra indica il valore della corrente supportata. Ho scelto quello con corrente più alta anche se non ho compreso bene una cosa. L'alimentatore in ingresso assorbe 2.5A (dati di targa) mentre il ponte è da 2A ed il fusibile da 4A....non dovrebbe essere almeno da 2,5A?

Un termistore PTC da 3A potrebbe andare bene ma ho fatto un ragionamento, conoscendo un pò a memoria lo schema.
In ingresso agli alimentatori switching assieme al filtro EMI, a scopo sicurezza, ci sono solitamente inseriti in serie il fusibile ed il termistore PTC (solitamente simile ad una pastiglia colore nero o verde nel nostro caso) e, in parallelo, due o più soppressori di sovra tensioni ad ossido (resistenze non lineari che presentano un valore molto elevato fino ad una certa tensione per poi ridursi a valori bassissimi oltrepassata questa). Lo scopo dei soppressori è quello di cortocircuitare eventuali sovratensioni di breve durata, ma elevata energia, che i condensatori non sarebbero in grado di assorbire. Questi varistori si comportano, quindi, come corto circuiti a massa per tensioni superiori a quelle limite, salvaguardando i componenti successivi. Sono solitamente posti a valle del fusibile, hanno l' effetto di farlo fondere se l' impulso di sovratensione dura sufficientemente a lungo. Voglio fare cenno alla funzione del fusibile. Ci si potrebbe chiedere perchè non è posto in una posizione accessibile per la sostituzione da parte dell'utente, anzi, spesso è saldato al circuito stampato.
La ragione è che la bruciatura del fusibile, per un alimentatore switching, è un fatto estremo che avviene o per un sovraccarico molto grande che si protrae a lungo, per l'azione dei varistor o semplicemente per il guasto del PWM o dei transistor di commutazione sulla rete che vanno in corto circuito.
Lo scopo del fusibile non è salvare l' alimentatore, ma piuttosto salvare la rete e l' utilizzatore dal guasto dell' alimentatore ed evitare che una corrente eccessiva provochi gravi danni, come esplosione dei condensatori o incendi. Spesso, quando il fusibile brucia, i transistor dello switch primario sono già ampiamente defunti e l'alimentatore è inservibile. Sfortunatamente, il tempo di fusione delle giunzioni dei semiconduttori è molto minore di quella del filo del fusibile.
Lo scopo del fusibile non è quindi quello di salvare questi transistor, ma di evitare una sovra corrente in rete dovuta ad un corto circuito sull' alimentatore stesso.

Unica rara situazione in cui il cambio del fusibile potrebbe essere utile è quella che la sua bruciatura sia dovuta all' intervento dei varistor che ha cortocircuitato un impulso di sovra tensione e che questa non abbia danneggiato nulla a valle. Siccome il fatto è estremamente improbabile e in tutte le altre situazioni il ripristinare il fusibile senza aver rimosso le cause della bruciatura sarebbe non solo inutile, ma anche assai pericoloso, ecco che il fusibile stesso non è accessibile e non ne è prevista la sostituzione da parte dell'utilizzatore. Nel nostro caso, è molto probabile che il guasto sia dovuto alla rottura del ponte (lo spero) che ha mandato in fumo il PTC... per fortuna.
Ad ogni modo per trovare il valore corretto del PTC occorre tenere conto che i condensatori di ingresso, all'inizio della carica, assorbono una corrente direttamente proporzionale alla loro capacità; i condensatori elettrolitici della sezione ad alta tensione dello switching, hanno valori piuttosto grandi (da 220 microfarad in su) e questo causa un forte impulso di corrente all'accensione. Un simile "colpo" di corrente, che può raggiungere molte e molte decine di ampere, per quanto molto breve, non sarebbe ben accolto dai semiconduttori, in particolare dai diodi del ponte raddrizzatore, che rischierebbero la rottura per sovraccarico. Inoltre questo forte impulso di corrente sarebbe anche poco gradito ad eventuali dispositivi di protezione della linea di alimentazione, facendoli scattare.
Ecco perchè, tra il filtro di ingresso e il raddrizzatore, viene inserito un limitatore di corrente costituito dal termistore PTC (nel CS è indicato con TH): il suo scopo è quello di limitare il fortissimo impulso di corrente che si ha all'accensione dell'alimentatore.
Il termistore PTC, all'accensione, è freddo ed ha una resistenza molto alta; questo limita il valore della corrente ad un valore ragionevole basso da non creare danni ai conduttori e agli altri componenti interessati e a non far scattare eventuali protezioni dell'impianto di alimentazione della rete.
Avvertenza : il PTC è caldo quando è al lavoro, per cui a parte il pericolo di scosse è decisamente meglio non toccarlo.
Mano a mano che la corrente carica i condensatori, il termistore si scalda e la sua resistenza si riduce, fino a che diventa trascurabile. Il picco di corrente si attenua e l'alimentatore assorbe la sua corrente di ingresso tipica, che dipende dal carico applicato. Inserire nel nostro circuito un PTC da 3A, comporta farlo lavorare al limite, con conseguente rischio di vederlo "bruciare" senza far intervenire il fusibile. Un valore più alto invece essendo sovradimensionato rispetto al normale valore di intervento del fusibile, lo salverà da morte prematura durante il normale funzionamento, garantendo nel contempo un protezione accettabile in quanto più lento a scaldarsi del modello da 3A. Inoltre entrambi i componenti (da 4 e 5Ampère) hanno un valore Zero Power Resistance di 5 ohm (a 25°C)
Sperando che il ragionamento sia "giusto", procedo con la saldatura dei componenti "nuovi" di recupero e con un pò di ansia decido di provare ad accenderlo. Per l'avvio dell'alimentatore occorre predisporre un minimo di carico in uscita (un paio di lettori CD vanno bene) e dare il consenso all'avvio. Basta collegare il filo verde con un filo nero (la massa) e....funziona!! La ventola parte, i lettori CD si avviano... funziona davvero! Eureka!
Anche questa volta ho salvato un rottame dai rifiuti tossici, consapevole che nessuno riconoscerà mai il mio contributo a salvare l'ambiente a vantaggio di tutti. Pazienza. Resta una grandissima soddisfazione che mi spinge a mandare a quel paese il rivenditore disonesto che nel tentativo di rapinarmi con la vendita del nuovo mi disse con un sorrisetto ebete..."...ci ho già provato a ripararli...è impossibile...lascia perdere..", ma vaffanculo va, incapace!
Alla prossima.

P.S. L'ora non è legale ed il tempo corre. Ripeto: L'ora non è legale ed il tempo corre.

domenica 15 novembre 2009

NEC e616V - autopsia


L'impulso di capire e conoscere mi ha assalito all'improvviso, alle spalle, senza preavviso, proprio durante un ritaglio di tempo, mentre ho per le mani un vecchio cellulare NEC mod. e616V della Tre. L'alimentatore è rotto, bruciato e purtroppo irrimediabilmente irreparabile. L'apparecchio è sicuramente funzionante (mi fido di chi me l'ha dato perchè lo conosco) ma è quasi impossibile da aprire. Le viti di chiusura infatti sono quelle con incavo a triangolo e di trovare il cacciavite adatto di quelle dimensioni nei normali circuiti commerciali a prezzi ragionevoli è quasi impossibile. Decido allora di tentare di aprirlo comunque. Impossibile provare ad incastrare un mini cacciavite piatto e tentare di fare leva. Il cacciavite si rompe ed a mali estremi, estremi rimedi. Si prende una punta di trapano che si incastri nel centro del triangolo. Le viti sono affogate nel cover di plastica. Con il dr*mel (o simil-compatibili) le si fa girare velocemente sino a quando non si cola la plastica e si elimina la filettatura della sede. E' un metodo parzialmente distruttivo, per cui se si sta riparando l'apparecchio (senza attrezzatura? orrore!) occorre poi sostituire le viti con altre leggermente più grosse e con una testa normale (torx o a stella). L'apertura del cover non è difficile, è ad incastro. Si tira delicatamente e si fa leva con un attrezzo in plastica (per evitare di rigare o rovinare il cover). Il mio obiettivo è quello di verificare se il display LCD presenta delle sigle che mi possano permettere di ri-utilizzarlo in qualche applicazione, visto che ha delle dimensioni generose (TFT, 65K colori 176 x 240 pixels, 35 x 43 mm). Mi interessano anche le due Cam CMOS da 1.3 Mpixel (CIF 352 x 288 pixels), il micro microfono ed i mini altoparlanti. Anche la tastiera a joystick centrale è interessante da recuperare. L'unico neo sono i connettori dei cavi flat. Hanno un passo maledettamente stretto e dissaldarli è una sfida, nei negozi non si trovano e trovare quelli giusti una vera impresa, specie se servono in modeste quantità. Forse...dai cinesi...devo cercare.

Prima devo procurarmi lo schema dell'apparecchio, ma dato che si tratta di un modello un pò vetusto, dubito che sia in circolazione. Ad ogni modo, con lo schema in mano dovrei riuscire ad avere anche la piedinatura dei flat ed i tipo di segnale necessario ad un retrofit dei componenti per altre applicazioni. Lo schermo grafico per evitare di usare i soliti LCD verdi a caratteri, bellini ma obsoleti. Le due cam CMOS, per qualche microspia portatile customizzata, occultata nei posti più impensabili per la videoregistrazione ambientale. Se si riuscisse ad eliminare il filtro IR, non escludo si possa fare anche una camera termografica ad infrarossi, sarebbe fantastico. Ad ogni modo, alcune foto le ho "rubate" da un altro sito, che frequento spesso e che gentilmente mi ha concesso il permesso di usarle. Nella sezione hardware a volte vengono messi in offerta dei particolari di ricambio obsoleti a prezzi davvero ridicoli (non so come facciano a guadagnarci qualcosa), solo che occorre andarci spesso per accaparrarsi qualche occasione. Tutto materiale utile per riparazioni o semplicemente per qualche riutilizzo diverso da quello cui erano destinati. Ora passo alla ricerca dello schema e se riesco a fare qualcosa non mancherò di divulgare i risultati. Alla prossima.

P.S. Il monolito è a pezzi e manca il motore. Ripeto: Il monolito è a pezzi e manca il motore.

giovedì 1 ottobre 2009

Autopsia di una mother board


Oggi, solito giretto da un Collega ed il bagagliaio dell'auto accoglie l'ennesimo PC salvato da mani avide pronte ad avvelenare l'ambiente e guadagnare dai falsi bisogni percepiti. L'obsolescenza percepita e programmata sono due bestie capaci di condizionare anche i più attenti. "Cos'ha questo PC?" chiedo. "Boh...si accende". Non importa. Vediamo cosa possiamo fare. Corsa in laboratorio e primo test. Effettivamente il PC si accende ma è morto, non dà segni di vita. Si procede quindi con la dissezione dei componenti, separati per lo smaltimento consapevole, accompagnata dalla gioia di aver recuperato un masterizzatore DVD dual layer... mi mancava. Le parti elettroniche vanno esaminate a parte: partiamo dalla mother board. Non serve un occhio esperto per capire cosa c'è che non va. Quattro condensatori elettrolitici sono "esplosi". La parte superiore che presenta un rigonfiamento nella capsula metallica, è aperta, fessurata nel punto di rottura programmato (un taglio a croce). Non ho alcun elemento certo per dirlo ma mi sento autorizzato ad ipotizzare che quel taglio faccia parte delle soluzioni per programmare la rottura (dopo un tempo preciso) dei componenti elettronici ed alimentare i consumi. Obsolescenza programmata da qualche mente malata che andrebbe o curata o eliminata dal pianeta. La cosa ha funzionato. Infatti l'utilizzatore per 4 condensatori guasti (valore pochi centesimi) ha buttato tutto il PC (TUTTO!) per prenderne uno di nuovo. Complimenti inquinatore di mer*da!. Da parte mia, di riparare una vecchia mother board pentium III senza scheda di rete nemmeno a parlarne. Sicuramente, dato che il guasto sembra localizzato nei pressi dell'alimentazione a 3.3 volts, c'è anche qualche altro componente da sostituire e non ne vale proprio la pena, considerato che ne ho altre di mother board in attesa di diventare dei server. Ma allora che ci faccio? Facciamo un elenco di alcuni componenti che potrebbero essere recuperati e ri-utilizzati in qualche esperimento o applicazione.
1 processore AMD K71200T266 (MB MSI K7 Pro2 Ver.1 Via technologies)
1 batteria al litio da 3V CR2032. Per il PC che campeggia in laboratorio è una manna dal cielo in quanto la sua è scarica e doveva essere sostituita.
Connettori USB, un dissipatore in alluminio, connettori audio, connettori a pin, ventola della CPU a tre fili ed altre parti meccaniche sempre utili per chi sperimenta, progetta, ricerca...
Per la parte elettronica:
W83601R: Winbond Electronics General Purpose Input/Output IC con SMBus (I2C) provvisto di 15 pin General purpose di ingresso uscita (GPI/O)
SC1155CSW: PROGRAMMABLE SYNCHRONOUS DC/DC HYSTERETIC CONTROLLER WITH VRM 9.0 VID RANGE della Semtech
SC1101CS: VOLTAGE MODE PWM CONTROLLER della Semtech
Due SUB70n03-09P N-Channel MOSFET da 30Volt 75 Ampère (Tj 175°C) ottimizzati per il PWM (pulse with moulation in applicazioni switching) della Vishay
Due SUB75n03-07 N-Channel Mosfet da 30Volt 75 Ampère (a 25°) con temperatura di giunzione supportata sino a 175°C Rdson 0.007 ohm
PBYR1025D: Diodo Schottky (fast) 25V 10A della Philips
Due PHD45N03LT: TrenchMOS(TM) logic level FET della Philips N-channel logic level field-effect power transistor 25V 40A
GD75232: Doppia seriale RS-232 (Drivers And Receivers) della Texas Instruments
ATF16V8B Atmel 250 gate electrically erasable PLD, 20 pins, standard power, 5V High- Performance Flash PLD
74F245: Octal Bidirectional Transceiver with TRI-STATE Inputs/Outputs
74F157A: Quad 2-Input Multiplexer Fairchild Semiconductor
74F244: Octal Buffers/Line Drivers with 3-STATE Outputs
Oltre a questi componenti dobbiamo recuperare almeno 4 induttanze avvolte su ferrite tonda (perfette per la realizzazione di alimentatori switching), una cicalina elettronica, condensatori vari, reti resistive e,condensatori, diodi, resistenze smd, un porta batteria, tre quarzi. Non sono riuscito a trovare il componente che fa da sensore di temperatura... tempo fa li mettevano a parte, mentre non so se oggi sono incorporati nel processore...può essere? Boh, devo ancora approfondire. Non c'è nemmeno l'ombra dell' RTC Real time clock... forse sono nei componenti che non sono riuscito a decifrare.
Ed ora? Procedo  con la dissaldatura (rimane provvidenziale il dissaldatore ad aria calda fai da te che mi sono costruito qualche post fa). I componenti di più facile ri-utilizzo sono i mosfet di potenza, per pilotare carichi "pesanti" in accoppiata ad un microcontrollore (magari per miniaturizzare il controller del motore stepper in attesa di essere terminato). Le induttanze, assieme ai condensatori low ESR, vanno  bene per realizzare degli  alimentatori switching. Per i transceivers... ci devo pensare un pò, non li ho mai usati nelle mie applicazioni hobbistiche ma prima o poi... Interessante il W83601R con 15 uscite bidirezionali programmabili via I2c... qualche applicazione la trovo di sicuro. Alla prossima.

P.S. Il merlo si impenna ed alla volpe piace l'uva. Ripeto: Il merlo si impenna ed alla volpe piace l'uva.

giovedì 10 settembre 2009

Samsung SGH-U600 - autopsia LCD

La curiosità mi ha sempre spinto ad aprire tutto ciò di cui non conosco bene la composizione. E' un modo per aguzzare l'ingegno e reperire materiali di recupero introvabili in commercio, per applicazioni "strane", modifiche, hacking e altre attività esercitate come hobby o passatempo, ma che tanto servono anche nella professione per sapere di cosa si sta parlando.
Lo schermo LCD del Samsung SGH-U600 riparato (ne vado fiero vista la difficoltà data dal particolare guasto riscontrato e dalle caratteristiche costruttive miniaturizzate), non ha resistito nemmeno poche ore, che già è stato ridotto ai minimi termini. Come si può notare, è composto da 9 parti (in realtà sono di più ma difficilmente separabili). Vediamo di capire qualcosa analizzandole in senso antiorario partendo dalla prima in alto a destra. 
  • Guscio metallico di supporto e telaio avente funzioni di schermo e sostegno meccanico per irrobustire l'assemblaggio. 
  • Schermo riflettente
  • Schermo diffusore
  • Schermo a "lente di fresnel"
  • Schermo semitrasparente riflettente (polarizzatore)
  • Schermo iridescente riflettente
  • Matrice LCD (2 vetrini sovrapposti)
  • Protezione superficiale adesiva antigraffio
  • Led bianchi di retro illuminazione e basetta con elettronica di comando

Non mi è chiara la funzione di ogni singolo componente, dovrò approfondire per capire meglio. Il componente più delicato, quello che si è rotto, è il pannello composto da due vetri sovrapposti. Fra i due, ci sono i punti (pixel) che diventano trasparenti o opachi se attivati elettricamente tramite i segnali elettrici elaborati da un circuito racchiuso nella parte bassa del pannello (che non si vede un quanto distrutto). Da questo circuito escono 6 fili, uno di alimentazione e gli altri contraddistinti dalle sigle WEN (Write enable), READ (lettura), CS (Clock source), ADS (dati seriali) ed FLM (?? indirizzo x.y del pixel??). La massa probabilmente è collegata al supporto metallico. La luce emessa dai led bianchi viene diffusa dai foglietti retrostanti la matrice e passa dove i pixel della matrice sono trasparenti per effetto della polarizzazione della luce attraverso il filtro polarizzante. Il colore viene generato mescolando la percentuale di trasparenza di ogni punto composto da 3 transistor che attivano i cristalli liquidi nelle componenti RGB (Rosso Verde Blu). Il principio è abbastanza semplice ma la complessità dell'elemento più importante è meravigliosa. Non so quale sia il processo di deposito dei componenti sul vetro (cristalli, transistor ed altra circuiteria), credo sia la parte più costosa di tutto l'insieme. Una volta prodotti in serie sono pronti ad alimentare la catena di ricarichi economici che da voi, in Itaglia, subiscono un impennata tale da spingervi ad acquistarli direttamente all'estero, giusto per far capire a certi industriali e commercianti delle "spaghetti factory", dove sta la vera causa della crisi economica che stanno passando (avidità e disonestà). Hanno poco da chiedere di risollevare i consumi e credere che non si spende più perché abbiamo paura. Se questa è la loro conclusione, alimentata da governanti illuminati, stiamo freschi...non hanno capito nulla ed a poco valgono i dazi per farci desistere. Vedrò di approfondire comunque le incognite tecniche, a scopo didattico. alla prossima.
P.S. Le scarpre di Silvio sono di cartone bagnato. Ripeto: Le scarpre di Silvio sono di cartone bagnato.

martedì 8 settembre 2009

IP-301 Alimentatore riparato

Bene! Anche questo salvato dalla discarica dei rifiuti tossico nocivi. Dal post precedente è passato un pò di tempo, per far posto ai progetti in via di realizzazione.  In una pausa ho deciso di toglierlo dal tavolo del laboratorio che lo spazio è prezioso. Allora... L'alimentatore del Telefono IP301 (Perfectone o Euteglia) è del tipo switching step down converter. Ha smesso di funzionare dopo un agonia nella quale la tensione di alimentazione in uscita si abbassava progressivamente. Il sintomo è la fonia gracchiante dell'apparecchio telefonico e le scritte sul display che si affievoliscono. Vediamo come procedere per andare a colpo sicuro.
La procedura di apertura del contenitore: Si fa leva con un cacciavite per sganciare le due clips plastiche su ogni lato. Con delicatezza si infila un cacciavite piatto nelle fessure che si vedono appena esternamente (sono posizionate un pò verso gli angoli). Occorre premere la parte superiore (quella con l'etichetta) che è agganciata nella parte inferiore (clips femmine) che alloggia i tue terminali per la tensione di rete 230V AC. Appena salta via il coperchio, si notano subito i componenti SMT lato circuito stampato. Delicatamente si tira il cavo di alimentazione in bassa tensione e si estrae la basetta per mettere in evidenza i componenti.
Procedura di ispezione: si guarda immediatamente se si notano bruciature, annerimenti da arco voltaico, componenti anneriti. Se non si nota nulla di strano, si procede con il controllo del fusibile di ingresso. Se è bruciato si può procedere con il controllo dello stadio iniziale: Condensatori di filtro, ponte di diodi e componenti a valle individuabili seguendo le piste del circuito stampato. Se il fusibile è integro, è più probabile che il guasto, come in questo caso, risieda nello stadio finale. Il sintomo descritto indica con buona probabilità un problema ai condensatori di uscita. Per i guasti alla parte intermedia, in alta frequenza...è un casino e spero di non dover mai intervenire. Ad una osservazione attenta è possibile notare come il condensatore C2 presenta uno strano rigonfiamento della calotta metallica superiore. Può indicare un surriscaldamento dell'elettrolita interno e conseguente aumento di pressione. Per scrupolo, si dissalda anche il condensatore C3 che è accanto. Sotto quest'ultimo, si nota che la gomma sigillante (il "tappo") è fuoriuscita, anche in questo caso per aumento di pressione interna. Sono entrambi da sostituire. Con un tester si può controllare la coppia di diodi fast o il mosfet montato sul dissipatore. Ad un controllo sommario sembra tutto ok e la mancanza di bruciature o fiammate abbinata al tipo di sintomo, mi suggerisce di non procedere oltre con le indagini.
La sostituzione dei condensatori: Prima di procedere con la sostituzione, è opportuno effettuare una misura con un capacimetro e verificare se effettivamente i componenti incriminati sono guasti. Nel nostro caso il C2 ha segnalato una capacità di 21 uF contro i 1000 di targa, mentre il C3 è praticamente interrotto. La difficoltà per chi come me usa rigorosamente componenti di recupero è quella di trovare un sostituto di uguali dimensioni e caratteristiche. I valori di capacità, in questo caso devono essere rispettati assieme al voltaggio nominale. Nel nostro caso, il condensatore C2 è stato sostituito con uno da 10 volts al posto dei 16 raccomandati (quello, ho trovato). Se la tensione di uscita è  d circa 9 volts, siamo entro i valori (ma al limite). Un altra caratteristica da rispettare è il tipo di condensatore da sostituire. Non va bene il primo che càpita di pari valore. Devono essere anche low ESR (bassa resistenza equivalente) e li si possono riconoscere per la sigla stampigliata sull'involucro. Si possono recuperare da altri alimentatori switching, quelli per i PC sono ideali, e presentano delle stampigliature dei valori sull'involucro con inchiostro bronzo / oro. L'ideale è avere un misuratore di ESR... è solo questione di tempo e so già che si può auto costruire.
Comunque, al momento l'alimentatore è stato rimesso al suo posto, in esercizio 24/24 7/7 per verificare se la riparazione "tiene", dentro l'armadio server, dove la temperatura è un pò alta in mancanza di un sistema di ventilazione adeguato (next project, of course). Per ora nulla da segnalare. Il Telefono funziona perfettamente ed io ho il morale alle stelle. Un rifiuto in meno su questo pianeta a contributo del "benessere" di voi stupidi terrestri. Alla prossima.

P.S. Il Leone è incapace di tornare a casa. Ripeto:Il Leone è incapace di tornare a casa.

giovedì 3 settembre 2009

IP-301 Riparazione alimentatore

Da qualche giorno uno dei due telefoni IP che ho sulla scrivania ha cominciato a "gracchiare". La suoneria gracchia, l'audio in altoparlante gracchia, la cornetta gracchia. Sono gli IP-301 della Perfectone che ho riparato qualche post precedente. Immediatamente penso che l'apparecchio si sta guastando. Noto che le scritte sul display sono diventate pallide e stanno quasi sparendo. Sollevando la cornetta sento il tono di libero che però gracchia come una cornacchia. Provo a scambiare i cavi di rete (pensando ad un problema alla porta dello switch) ma niente da fare. Allora scambio i due jack di alimentazione e il problema si sposta nell'altro apparecchio. E' l'alimentatore. Lasciandolo spento per un pò la cosa si risolve, ma dopo mezza giornata il problema si ripresenta. Stasera, dopo aver provato a lasciarlo raffreddare, il telefono non si accende più. Alimentatore guasto definitivamente, morto, meglio così. I guasti che si presentano oltre una certa soglia di temperatura sono difficili da scovare.
L'alimentatore è un modello AC/DC Switching 9V 1,3 A modello GFP121T-0913, della GME - TAIWAN OFFICE : Room 1, 2F., No.703, Yuanhuan E. Rd., Fongyuan City, Taichung County 420, Taiwan (R.O.C.)
China Factory : #A19.Wetren Industrial Area. Tantou Village. Songgang Town.Shenzhen City.China
sito intenet: www.gme.com.tw
GENERAL SPECIFICATIONS:
Operating Temperature: 0 ~ 40°C
Operating Relative Humidity: 5%RH ~ 95%RH
Storage Temperature: -20 ~ 85 °C
Efficiency: 70% Min
INPUT/OUTPUT SPECIFICATIONS:
Input Voltage: AC90-240V/50-60HZ
Range Voltage: AC90-264V/47-63HZ
Output Power: 12W
Output Voltage: 3-15V
Over Current Protection: AUTO RECOVERY
Over Voltage Protection: 120%
Short Protection: THE ADAPTER SHALL NOT DAMAGE BY SHORT THE DC OUTPUT TO GROUND
Load Regulation: ±5%
Decido, sfidando me stesso, di tentare lo stesso esperimento effettuato con successo sull'alimentatore della fonera (vedi operazioni dettagliate). A breve l'aggiornamento ed i risultati ottenuti. Alla prossima.

P.S. La quaglia passeggia sotto il campanile. Ripeto: La quaglia passeggia sotto il campanile.

sabato 1 agosto 2009

Riparare l'alimentatore della fonera

Una casuale ispezione periodica alla sala server che governa la domotica della mia abitazione e mi accorgo di un guasto. La fonera (www.fon.com) che condivide la mia connessione ADSL (e qui lo ricordo è perfettamente legale contrariamente a quello che dicono certi troll illuminati e male informati) è spenta. Why? Si sarà mica guastata?. Per fortuna no. E' solo un problema dell'alimentatore. Di ordinarlo nuovo nemmeno a parlarne... di portarlo da un riparatore men che meno, sono infatti sempre pronti a dire "non conviene...buttalo e comprane uno di nuovo". Branco di deficienti. Vi dimostro che avete torto marcio! Conviene riparare e decido per il "fai da te", così faccio un pò di pratica e risparmio qualche euro che mi serve resti in tasca. Decido quindi per la riparazione....senza alcuno schema. Nessuno si è mai preso la briga di pubblicarlo, forse per proteggere un segreto industriale da custodire gelosamente quasi fosse un vantaggio competitivo vitale per l'azienda produttrice. Stiamo parlando di un alimentatore switching da 5 volts 2 ampère, ovviamente made in cina visto che qui nessuno ha più voglia di lavorare salvo adoperarsi per fare posto all'attività di fare soldi sulle spalle degli altri senza produrre nulla di utile. Ad ogni modo vediamo come fare per una riparazione:
Premessa: ATTENZIONE - rischio di scosse mortali. Questo tipo di alimentatori lavorano in alta frequenza ed alte tensioni. C'è il rischio di restare fulminati. Uomo avvisato mezzo salvato. Se non avete nozioni sul funzionamento di tali circuiti e su come trattarli lasciate perdere e dedicatevi ad altro.
Primo Step: apertura del contenitore. E' un guscio saldato ad ultrasuoni, un sistema molto in voga per i produttori di apparecchiature usa e getta, economico, rapido e conveniente per il reparto commerciale. Si prende una lama da seghetto per il ferro, senza supporto che pesa ed ingombra. La si appoggia sulla scanalatura in prossimità della spina e si inizia pazientemente e lentamente avanti ed indietro...a mano, tenendo orizzontale la lama per un taglio dritto e profondo uniformemente. Ci si ferma appena si sente che i dentini della lama iniziano a "grattare" su qualcosa di più duro... il circuito stampato interno od i componenti elettronici. Guai ad andare giù con forza, si rischia di tagliare l'elettronica con conseguenze immaginabili. Evitare la lama diamantata del Dremel o simili, in quanto difficilmente si riuscirà a produrre un taglio dritto, uniforme e profondo quanto basta. Non c'è miglior controllo al mondo che le proprie mani... o una CNC non alla portata di tutti. Con la lama si pratica un incisione sui tre lati da dove non fuoriesce il cavo elettrico. Sui quattro angoli si fa "dondolare" il seghetto avanti ed indietro per seguire la curvatura della saldatura. Con un pò di pazienza si riesce ad eseguire un taglio perfetto.
Secondo Step: Apertura del guscio. Occorre smuovere alternativamente a destra e sinistra il coperchio per staccare il lato non tagliato che presenta un foro quadrato per il cavo di alimentazione in uscita. Pian piano, senza sforzare troppo, si riesce a togliere il coperchio. Non tirare troppo per non strappare i fili che partono dalla spina 220 volts e vanno al circuito.
Terzo step: Estrazione del circuito dal guscio. Si tira il circuito stampato con un pò di sforzo tenendolo per la sua sporgenza. Non prendere e tirare i componenti, non fare leva con cacciaviti o altro. Nella parte posteriore interna, c'è un foglietto di gommapiuma inserito per "ammortizzare" il tutto che risulta solo "incastrato" senza viti di fissaggio.
Quarto step: Analisi ed ispezione interna. La prima cosa da controllare è il fusibile, che risulta racchiuso dentro un tubetto nero di gomma termo-restringente. Si prende un cutter e si pratica un incisione longitudinale. Nel mio caso il fusibile è risultato bruciato e va sostituito con modello analogo da 1 Ampère 250 volts. Evitare di accendere l'alimentatore dopo la sostituzione... si rischia di amplificare il danno che sta a valle...se è saltato il fusibile un motivo ci sarà vero?? Ho usato un fusibile di recupero fra i tanti che ho pazientemente raccolto nel tempo (negli alimentatori switching da PC ce n'è almeno uno).
Quinto step: Controllo dei componenti. Il primo componente che si incontra è un condensatore in poliestere, ai cui capi è collegata direttamente la tensione di rete. Lo si dissalda e lo si testa con un capacimetro. Risultato: ho misurato una capacità diversa dal valore di targa 0.22 uF, per cui se lo avessi provato con un tester non mi sarei accorto del guasto. Una rapida frugata nel contenitore dei condensatori di recupero mi ha aiutato a trovarne uno di dimensioni quasi uguali. Il componente successivo è una doppia bobina avvolta su un nucleo di ferrite che compone il filtro LC di ingresso che sfrutta la reattanza capacitiva del condensatore ed abbassa la tensione di rete ad un valore accettabile. Da un ispezione visiva, in assenza di bruciature, ho deciso di non testare il componente in quanto difficilmente può essere sede di guasti. Lo stadio successivo è composto dal classico ponte a diodi (4 x 1N4007) ed un condensatore elettrolitico di livellamento da 22 uF 400V. Per provare i diodi occorre dissaldarne almeno un terminale e con un tester provare la conduzione in un senso solo. Per fortuna i 4 diodi sono risultati ok mentre anche il condensatore elettrolitico è andato...interrotto. Reperirne uno delle stesse dimensioni non è stato uno scherzo ma alla fine sono riuscito a trovarne uno simile. Non ho proseguito oltre con l'analisi dei componenti in quanto la bruciatura di un fusibile in ingresso, statisticamente indica un problema proprio nello stadio iniziale e l'integrità dei diodi mi ha permesso di supporre che i circuiti di regolazione fossero a posto.
Nel sostituire il fusibile sono riuscito anche a recuperare i due cappellotti che lo tengono fermo e ne permettono la saldatura. Con una pinzetta di cerca di sfilarli dal vecchio fusibile e con una morsa si inseriscono nel fusibile nuovo, senza premere troppo per evitare il rischio di rottura. Per sicurezza occorre proteggere terminali e corpo del fusibile con del tubetto termo-restringente.
Il risultato del collaudo, dopo aver rimontato il tutto e chiuso il contenitore con del nastro telato extra-forte, è stato positivo. Un successone, spesa zero per 15 minuti di lavoro, alla faccia dei riparatori svogliati dal "non conviene" facile. Ora l'alimentatore funziona alla grande e la discarica si sente orfana dell'ennesimo rifiuto tossico nocivo... alla prossima.

P.S. La misura non usura. Ripeto: La misura non usura.